Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 163
Filtrar
1.
Curr Res Food Sci ; 8: 100745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694555

RESUMEN

Improving the printing accuracy and stability of shrimp surimi and finding appropriate printing parameters and suitable thermal processing method can help to develop high value-added 3D printing products of shrimp surimi. It was found that in order to make the 3D printing products of shrimp surimi have higher printing adaptability (printing accuracy and printing stability reach more than 97%), by choosing nozzle diameter of 1.20 mm and setting the printing height of the nozzle to 2.00 mm, the layers of the printed products were better fused with each other, and the printing accuracy of the products could be greatly improved; there was no uneven discharge and filament breakage when the nozzle moved at the speed of 30 mm/s; and the products were internally compact and had good stability when the printing filling rate was 80%. In addition, the deformation rates of steamed, boiled and deep-fried shrimp surimi products were significantly higher than those of oven-baked and microwaved shrimp surimi products (P < 0.05). Microwave heating had a greater effect on the deformation and color of shrimp surimi products, and was not favored by the evaluators. In terms of deformation rate, sensory score, and textural characteristic, the oven-baked thermal processing method was selected to obtain higher sensory evaluation scores and lower deformation rates of shrimp surimi 3D printed products. In the future, DIY design can be carried out in 3D printing products of shrimp surimi to meet the needs of different groups of people for modern food.

2.
Dalton Trans ; 53(16): 6941-6949, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38567552

RESUMEN

Phosphors with intrinsic white light emission are of great potential in constructing high-quality white LEDs (WLEDs). In this work, we propose the use of energy transfer from Bi3+ to Eu3+ ions for white light emission. A unique Bi3+-activated phosphor LaGdO3 (LGO):Bi3+ was generated using the conventional high-temperature solid-state process. An energy transfer was established by introducing Eu3+ into the phosphor composition. The emission colour of LGO:Bi3+,Eu3+ phosphors changes from cyan to white to orange-red depending on the Bi3+/Eu3+ doping proportion. The energy transfer between the Bi3+ and Eu3+ ions results from the dipole-dipole interaction. The LGO:Bi3+,Eu3+ phosphors were combined with a near-ultraviolet chip to successfully create a single-component WLED device with a colour-rendering index of 92.4. Our work demonstrates the energy transfer as a route for single-component white light emission and makes LGO:Bi3+,Eu3+ phosphors one of the candidate materials for near-ultraviolet lighting.

3.
Food Chem ; 450: 139150, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38688226

RESUMEN

This study aimed to investigate taste substances of shrimp heads stored at 20 °C, 4 °C, -3 °C, and - 18 °C, and the correlation between taste substances and 25 key volatile substances. Notably, samples stored at 20 °C showed significant changes in bitter amino acids and hypoxanthine, and quickly deteriorated. Samples stored at 4 °C for 14 d or - 3 °C for 30 d facilitated the development of umami amino acids, sweet amino acids, and IMP. Furthermore, samples stored at -18 °C for 30 d demonstrated no significant changes in taste profile. Changes in taste substances through quantitative analysis were consistent with changes in taste profile through e-tongue analysis. Based on the results of O2PLS (VIP > 1), Cys, Arg, Glu, Ser, Val, Ala, Ile, ADP, and IMP were correlated with 25 key volatile substances. This study provides fundamental data for the storage, transportation, and value-added utilization of shrimp heads.

4.
Phytomedicine ; 127: 155494, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471370

RESUMEN

BACKGROUND: Parkinson's disease (PD), a neurodegenerative disorder, is characterized by motor symptoms due to the progressive loss of dopaminergic neurons in the substantia nigra (SN) and striatum (STR), alongside neuroinflammation. Asiaticoside (AS), a primary active component with anti-inflammatory and neuroprotective properties, is derived from Centella asiatica. However, the precise mechanisms through which AS influences PD associated with inflammation are not yet fully understood. PURPOSE: This study aimed to explore the protective mechanism of AS in PD. METHODS: Targets associated with AS and PD were identified from the Swiss Target Prediction, Similarity Ensemble Approach, PharmMapper, and GeneCards database. A protein-protein interaction (PPI) network was constructed to identify potential therapeutic targets. Concurrently, GO and KEGG analyses were performed to predict potential signaling pathways. To validate these mechanisms, the effects of AS on 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in mice were investigated. Furthermore, neuroinflammation and the activation of the NLRP3 inflammasome were assessed to confirm the anti-inflammatory properties of AS. In vitro experiments in BV2 cells were then performed to investigate the mechanisms of AS in PD. Moreover, CETSA, molecular docking, and molecular dynamics simulations (MDs) were performed for further validation. RESULTS: Network pharmacology analysis identified 17 potential targets affected by AS in PD. GO and KEGG analyses suggested the biological roles of these targets, demonstrating that AS interacts with 149 pathways in PD. Notably, the NOD-like receptor signaling pathway was identified as a key pathway mediating AS's effect on PD. In vivo studies demonstrated that AS alleviated motor dysfunction and reduced the loss of dopaminergic neurons in MPTP-induced PD mice. In vitro experiments demonstrated that AS substantially decreased IL-1ß release in BV2 cells, attributing this to the modulation of the NLRP3 signaling pathway. CETSA and molecular docking studies indicated that AS forms a stable complex with NLRP3. MDs suggested that ARG578 played an important role in the formation of the complex. CONCLUSION: In this study, we first predicted that the potential target and pathway of AS's effect on PD could be NLRP3 protein and NOD-like receptor signaling pathway by network pharmacology analysis. Further, we demonstrated that AS could alleviate symptoms of PD induced by MPTP through its interaction with the NLRP3 protein for the first time by in vivo and in vitro experiments. By binding to NLRP3, AS effectively inhibits the assembly and activation of the inflammasome. These findings suggest that AS is a promising inhibitor for PD driven by NLRP3 overactivation.


Asunto(s)
Intoxicación por MPTP , Fármacos Neuroprotectores , Enfermedad de Parkinson , Triterpenos , Ratones , Animales , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Intoxicación por MPTP/tratamiento farmacológico , Intoxicación por MPTP/metabolismo , Neuroprotección , Enfermedades Neuroinflamatorias , Simulación del Acoplamiento Molecular , Microglía , Enfermedad de Parkinson/metabolismo , Neuronas Dopaminérgicas , Antiinflamatorios/uso terapéutico , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , 1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
5.
Phytomedicine ; 127: 155474, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38471369

RESUMEN

BACKGROUND: Inflammatory bowel disease (IBD) is characterized by a chronic inflammation of the intestine, which significantly affects patients' quality of life. As a perennial plant with the homology of medicine and food, Panax ginseng is known for its substantial anti-inflammatory effects in various inflammatory disorders. Ginsenosides, the main bioactive compounds of P. ginseng, are recognized for their efficacy in ameliorating inflammation. PURPOSE: Over the past decade, approximately 150 studies have investigated the effects of P. ginseng and ginsenosides on IBD treatment and new issues have arisen. However, there has yet to be a comprehensive review assessing the potential roles of ginsenosides in IBD therapy. METHOD: This manuscript strictly adheres to the PRISMA guidelines, thereby guaranteeing systematic synthesis of data. The research articles referenced were sourced from major scientific databases, including Google Scholar, PubMed, and Web of Science. The search strategy employed keywords such as "ginsenoside", "IBD", "colitis", "UC", "inflammation", "gut microbiota", and "intestinal barrier". For image creation, Figdraw 2.0 was methodically employed. RESULTS: Treatment with various ginsenosides markedly alleviated clinical IBD symptoms. These compounds have been observed to restore intestinal epithelia, modulate cellular immunity, regulate gut microbiota, and suppress inflammatory signaling pathways. CONCLUSION: An increasing body of research supports the potential of ginsenosides in treating IBD. Ginsenosides have emerged as promising therapeutic agents for IBD, attributed to their remarkable efficacy, safety, and absence of side effects. Nevertheless, their limited bioavailability presents a substantial challenge. Thus, efforts to enhance the bioavailability of ginsenosides represent a crucial and promising direction for future IBD research.


Asunto(s)
Ginsenósidos , Enfermedades Inflamatorias del Intestino , Panax , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Calidad de Vida , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Inflamación/tratamiento farmacológico
6.
Front Nutr ; 11: 1365282, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515524

RESUMEN

In this study, the antimicrobial mechanism of plasma-activated water (PAW) against Vibrio parahaemolyticus and the effectiveness of PAW in artificially contaminated Litopenaeus vannamei were investigated. The results demonstrated a significant reduction (p < 0.05) in viable counts of V. parahaemolyticus with increasing plasma discharge time (5, 10, 20, and 30 min) and PAW immersion time (3, 5, 10, 20, and 30 s). Specifically, the count of V. parahaemolyticus decreased by 2.1, 2.7, 3.3, and 4.4 log CFU/mL after exposed to PAW 5, PAW 10, PAW 20, and PAW 30 for 30 s, respectively. Significant cell surface wrinkling, accompanied by notable nucleic acid and protein leakage were observed after treatment with PAW. The permeability of the inner and outer cell membranes was significantly increased (p < 0.05), along with an increase in electrical conductivity (p < 0.05). The reactive oxygen species (ROS) within V. parahaemolyticus cells were significantly increased (p < 0.05), while superoxide dismutase (SOD) activity, and the relative expression of the ompW, emrD, and luxS genes were significantly decreased (p < 0.05). A reduction number of 1.3, 1.8, 2.1, and 2.2 log CFU/g of V. parahaemolyticus in artificially contaminated L. vannamei was obtained with PAW for 5 min. The study elucidated that PAW could destroy cell membranes, leading to cell death. The findings would strengthen strategies for V. parahaemolyticus control and provide a potential application of PAW for preserving aquatic products.

7.
Plant J ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38491869

RESUMEN

The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3 , showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.

8.
Dalton Trans ; 53(14): 6377-6385, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38497415

RESUMEN

NIR luminescent materials have garnered widespread attention because of their exceptional properties, with high tissue penetration, low absorption and high signal-to-noise ratio in the field of optical imaging. However, producing nanophosphors with high quantum yields of emitting infrared light with wavelengths above 1000 nm remains a significant challenge. Here, we prepared a nanoscale ZnGa2O4:xCr3+,yNi2+ phosphor with good luminescence performance in near-infrared emission, which was synthesized via a hydrothermal method and subsequent calcination process. By co-doping with Cr3+ and Ni2+, the ZnGa2O4 phosphor shows a strong broadband emission of 1100-1600 nm in the second near-infrared (NIR-II) region, owing to the energy transfer from Cr3+ to Ni2+ with an efficiency up to 90%. Meanwhile, a near-infrared phosphor-conversion LED (NIR pc-LED) device is fabricated based on the ZnGa2O4:0.8%Cr3+,0.4%Ni2+ nanophosphor, which has under 100 mA input current, an output power of 23.99 mW, and a photoelectric conversion efficiency of 7.53%, and can be effectively applied in imaging and non-destructive testing. Additionally, the intensity ratio of INi/ICr of ZnGa2O4:0.8% Cr3+,0.4%Ni2+ with its high sensitivity value of 4.21% K-1 at 453 K under 410 nm excitation, indicates its potential for thermometry application.

9.
Foods ; 13(3)2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38338564

RESUMEN

Three-dimensional (3D) printing provides a new method for innovative processing of shrimp surimi. However, there still exists a problem of uneven discharge during the 3D printing of surimi. The effects of different amounts of lard oil (LO), soybean oil (SO), and olive oil (OO) (0%, 2%, 4%, and 6%, respectively) added to shrimp surimi on the 3D printability of surimi were evaluated. The findings showed that with the increase in the added oil, the rheological properties, texture properties, water-holding capacity (WHC), and water distribution of surimi with the same kind of oil were significantly improved; the printing accuracy first increased and then decreased; and the printing stability showed an increasing trend (p < 0.05). The surimi with 4% oil had the highest printing adaptability (accuracy and stability). Different kinds of oil have different degrees of impact on the physical properties of surimi, thereby improving 3D-printing adaptability. Among all kinds of oil, LO had the best printing adaptability. In addition, according to various indicators and principal component analysis, adding 4% LO to shrimp surimi gave the best 3D-printing adaptability. But from the aspects of 3D printing properties and nutrition, adding 4% SO was more in line with the nutritional needs of contemporary people.

10.
Inorg Chem ; 63(5): 2655-2662, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38247267

RESUMEN

In an increasing manner, near-infrared phosphor-converted light-emitting diodes (NIR pc-LEDs) are considered to be exemplary light sources owing to their notable attributes of elevated output power, economical nature, and exceptional portability. NIR phosphors are critical components of NIR pc-LEDs. Herein, we report a novel blue light excitable NIR phosphor CaLu2ZrScAl3O12:Cr3+ (CLZSA:Cr3+) as a crucial and efficient broadband NIR emitter. The CLZSA:Cr3+ phosphor displays an intense NIR broadband emission peaking at 776 nm and with a full width at half-maximum (fwhm) of 140 nm. The designed material also exhibits superior resistance to thermal quenching, as the intensity of emission at 423 K remains at 80% of that at room temperature. The constructed NIR pc-LED device based on CLZSA:Cr3+ demonstrates a high total output power of 68.4 mW at a drive current of 100 mA, along with a high photoelectric conversion efficiency of 23.0%. Impressively, the high-power NIR pc-LEDs are utilized as light sources for remote control and non-invasive detection, resulting in the excellent performance and remarkable achievement.

11.
Food Chem ; 443: 138563, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38290301

RESUMEN

In this study, golden pomfret myofibrillar protein (MP) was used as the research object, and the oxidation system of malondialdehyde (MDA) as an inducer and the static digestion model in vitro was established for the analysis of the changes in protein structure and molecular morphology during oxidation and digestion. Subsequently, the effects of MDA-mediated oxidation on the structure and digestive properties of golden pomfret myofibrillar fibrillar protein were determined. The results showed that the hydrolysis degree and digestion rate of MP were inhibited with the increase in MDA concentration (0, 0.5, 1, 2, 5, 10 mmol/L), and the carbonyl group, surface hydrophobicity, irregular curling, and MDA content increased significantly (P < 0.05), whereas the total sulfhydryl groups, α-helices, free amino groups, hydrolysis degree, and MDA incorporation decreased significantly (P < 0.05), The molecular particle size was significantly reduced (P < 0.05), and the molecular morphology and molecular structure were analyzed (P >0.05). Finally, the molecular size and cross-linking degree gradually increased. In conclusion, MDA can alter the structure and morphology of proteins, resulting in a decrease in hydrolysis and digestion rate. This study can provide theoretical support and reference for the regulation of protein digestion.


Asunto(s)
Proteínas Musculares , Alimentos Marinos , Proteínas Musculares/química , Oxidación-Reducción , Miofibrillas/química , Hidrólisis
12.
Int J Biol Macromol ; 260(Pt 2): 129582, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246469

RESUMEN

Parvalbumin (PV) is a major allergen in fish, and traditional treatments cannot reduce its sensitization. The effects of dense-phase carbon dioxide (DPCD) treatment on the sensitization and spatial structure of PV in Trachinotus ovatus were evaluated in this study. Western blotting and indirect ELISA were used to determine the allergenicity changes and spatial conformations of PV treated by DPCD. Tris-tricine-SDS-PAGE, circular dichroism, surface hydrophobicity, endogenous fluorescence, UV spectrophotometry, free amino group, total sulfhydryl group and SEM analyses were applied to characterize PV structure. The results showed that DPCD treatment (15 MPa, 30 min, 50 °C) could reduce PV-induced allergic reactions by 39-41 %, which destroyed the normal conformational epitopes and reduced the risk of PV-induced allergy. The secondary structure changed from ordered to disordered with a decreased content of α-helical groups, while the internal hydrophobic groups were exposed. The total sulfhydryl group content decreased significantly (P < 0.05). The surface hydrophobicity and ultraviolet absorption spectrum were enhanced, and the endogenous fluorescence peak shifted to a long wavelength. Meanwhile, the content of free amino groups increased significantly (P < 0.05). This study could provide a theoretical basis and a promising technical approach for reduction of PV allergenicities.


Asunto(s)
Hipersensibilidad , Parvalbúminas , Animales , Parvalbúminas/química , Dióxido de Carbono/química , Alérgenos/química , Peces , Estructura Secundaria de Proteína
13.
Food Chem ; 441: 138332, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38183722

RESUMEN

The impact of oxidized myoglobin (Mb) on myofibrillar protein (MP) oxidation and water retention was investigated. Results showed that the oxidation of Mb increased with increasing concentration of oxidized linoleic acid (OLA). In the presence of 100 mmol/L OLA, hemin iron decreased by 62.07 % compared to the control group. Further investigation showed that mild oxidation of Mb (≤10 mmol/L OLA) increased the water retention and the absolute value of the zeta potential of MP, whereas excessive oxidation (>10 mmol/L OLA) decreased these properties. With the increase of Mb oxidation, the carbonyl content in MP increased, and α-helices changed to random helix. And the tertiary structure changed. Pearson correlation analysis suggested that oxidized Mb affected the water retention of MP, which was closely related to hemin iron and non-hemin iron. In conclusion, OLA induced Mb oxidation, further promoted MP oxidation and affected its water retention.


Asunto(s)
Hemina , Mioglobina , Mioglobina/química , Hemina/química , Oxidación-Reducción , Hierro , Agua
14.
Nat Commun ; 14(1): 7851, 2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062025

RESUMEN

While polymorphism is prevalent in crystalline solids, polyamorphism draws increasing interest in various types of amorphous solids. Recent studies suggested that supercooling of liquid phase-change materials (PCMs) induces Peierls-like distortions in their local structures, underlying their liquid-liquid transitions before vitrification. However, the mechanism of how the vitrified phases undergo a possible polyamorphic transition remains elusive. Here, using high-energy synchrotron X-rays, we can access the precise pair distribution functions under high pressure and provide clear evidence that pressure can reverse the Peierls-like distortions, eliciting a polyamorphic transition in GeTe and GeSe. Combined with simulations based on machine-learned-neural-network potential, our structural analysis reveals a high-pressure state characterized by diminished Peierls-like distortion, greater coherence length, reduced compressibility, and a narrowing bandgap. Our finding underscores the crucial role of Peierls-like distortions in amorphous octahedral systems including PCMs. These distortions can be controlled through pressure and composition, offering potentials for designing properties in PCM-based devices.

15.
Foods ; 12(24)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38137263

RESUMEN

The implications of different liquid nitrogen freezing (LNF) temperatures (-35 °C, -65 °C, -95 °C, and -125 °C) on the ice crystal and muscle quality of white shrimp (Litopenaeus vannamei) were investigated in this essay. The results showed that better muscle quality was maintained after LNF treatment compared to that after air blast freezing (AF) treatment. As the freezing temperature of liquid nitrogen decrease, the freezing speed accelerated, with the freezing speed of LNF at -125 °C being the fastest. However, an excessively fast freezing speed was not conducive to maintaining the quality of shrimp. Among all the freezing treatments, LNF at -95 °C led to the lowest thawing losses and cooking losses, and the highest L* values, indicating that LNF at -95 °C could keep the water holding capacity of frozen shrimp better than that with other freezing methods. At the same time, LNF at -95 °C resulted in higher water holding capacity, and hardness values for shrimps than those with other frozen treatments (p < 0.05). In addition, the results of the water distribution of shrimps showed that treatment with a -95 °C LNF reduced the migration rate of bound and free water. Meanwhile, the microstructural pores of shrimps in the -95 °C LNF group were smaller, indicating that the ice crystals generated during -95 °C LNF were relatively smaller than those generated via other frozen treatments. In conclusion, an appropriate LNF temperature (-95 °C) was beneficial for improving the quality of frozen shrimp, and avoiding freezing breakage.

16.
J Cancer ; 14(17): 3351-3367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928421

RESUMEN

BACKGROUND: The nck-associated protein 1 (NCKAP1) of the disulfidptosis-related gene is essential in programmed cell death. However, a comprehensive analysis of the biological significance of NCKAP1 in pan-cancer is lacking. METHODS: Gene expression matrices and clinical expression information of cancers were obtained from The Cancer Genome Atlas (TCGA) and Genotype Tissue Expression (GTEX) databases. A comprehensive analysis of NCKAP1 expression, biological function, gene mutation, immune cell infiltration, DNA methylation, and drug sensitivity profiles in pan-cancer was performed using the Timer2.0, HPA, GEPIA, STRING, cBioPortal, UALCAN and CellMiner databases. The prognostic value of NCKAP1 was investigated based on COX regression analysis and the Kaplan-Meier(K-M) curves. A nomogram was established to verify the clinical value of NCKAP1 for LUAD. The correlation between NCKAP1 and immune cells and signaling pathways were investigated by single-sample gene set enrichment analysis(ssGSEA). Validation was performed using PCR, Western Blot (WB), and Transwell assays. RESULT: Significant differences in expression levels, mutation levels, and methylation levels of NCKAP1 between tumor and normal samples. NCKAP1 affects the prognosis of various cancers. NCKAP1 is strongly associated with microsatellite instability (MSI) and tumor mutational burden (TMB). The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicate that NCKAP1 is strongly associated with cell death and tumor immunity. The expression of NCKAP1 affects the sensitivity to various drugs. Moreover, NCKAP1 is an independent predictor of prognosis in LUAD patients. The results of ssGSEA showed that elevated NCKAP1 expression was positively correlated with multiple immune-related signaling pathways. PCR analysis showed that the expression of NCKAP1 was increased in LUAD cells. Transwell invasion assay showed that overexpression of NCKAP1 resulted in enhanced invasion of LUAD cells. CONCLUSIONS: We comprehensively analyzed the relationship between NCKAP1 and pan-cancer and its potential clinical value. NCKAP1 could be a potential immune marker for various cancers (especially LUAD), providing new insights and insights for cancer therapy.

17.
Inorg Chem ; 62(47): 19341-19349, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955404

RESUMEN

The cation-equivalent substitution strategy has the ability to manipulate the luminescence color of phosphors and enhance their overall luminescence performance. A series of novel yellow feldspar-type 3D layered phosphors (Ca1-ySry)4MgAl2Si3O14:xEu2+ were synthesized using a high-temperature solid-state reaction. The solid solution phosphors belong to a tetragonal crystal system with a space group of P4̅21m and cell parameters of a = b = 7.75407-7.91794 Å, c = 5.04299-5.22543 Å, and V = 303.166-327.602 Å3. Under near-ultraviolet (n-UV) excitation, the luminescence color of the phosphor undergoes modulation from yellow-green (530 nm) to blue (467 nm) as the Sr2+ ion substitution ratio increases. This modulation is attributed to the gradual decrease in crystal field splitting energy. Additionally, both the Stokes shift and the full width of the luminescence spectra decrease. Furthermore, there is an increase in the quantum yield (QY) from 45.50 to 60.73%. Finally, the fabricated white-light-emitting diode devices emitted warm white light and achieved high Ra (Ra = 94, 96.6, 92.7) and low correlated color temperature (CCT = 3486, 3430, 3788 K), indicating that the prepared solid solution phosphors can be used as candidate materials for WLED lighting.

18.
Food Res Int ; 174(Pt 1): 113623, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986476

RESUMEN

The impact of treatment pressure, temperature and time of DPCD on the Pacific White Shrimp (Litopenaeus vannamei) surimi gel properties was studied and compared with the conventional heat treatment. The gel strength, crosslinking degree, and microstructure of shrimp surimi gels were investigated. Quantitative microstructural characteristics were investigated to elucidate the changes in microstructure during the formation of gel induced by DPCD. With increased DPCD treatment setting conditions, the gel strength and crosslinking degree of shrimp surimi gel significantly improved (P < 0.05) with similar variation trends. Quantitative microstructural analysis revealed that the fractal dimension (Df) and the pore equivalent diameter of gel microstructure increased with the increase of DPCD treatment conditions. The lacunarity decreased and then increased, whereas pore number increased and decreased. According to the microstructural characteristics results, the surimi gel with 51.48 % degree of crosslinking induced at 25 MPa, 50˚C, and 60 min showed the most complex and homogeneous microstructure with the highest (Df), smaller lacunarity, an average pore equivalent diameter, and a larger pore number. The correlation analysis demonstrated that the crosslinking degree was strongly positively correlated with the gel strength. The Df, pore equivalent diameter and number of pores significantly positively correlated with the crosslinking degree, whereas the lacunarity strongly negatively correlated with the crosslinking degree. The present study showed that the DPCD treatment with a crosslinking degree of 51.48 % is the most optimum condition for better gel formation. The study could provide a theoretical basis for processing shrimp surimi with improved gel properties.


Asunto(s)
Dióxido de Carbono , Alimentos Marinos , Dióxido de Carbono/química , Alimentos Marinos/análisis , Calor , Temperatura , Geles/química
19.
Dalton Trans ; 52(47): 17966-17973, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37982443

RESUMEN

In this work, a series of BaSrGd4O8:xBi3+ blue phosphors was synthesized employing the high-temperature solid-state method. Phase purity of the samples was verified by X-ray diffraction and Rietveld refinement. Time-resolved photoluminescence spectra revealed the existence of two distinct Bi sites. Subsequent optimization of dopant types and doping levels in the batch led to an almost twofold increase in quantum efficiency. The introduction of Eu3+ into the phosphors facilitated the construction of an energy transfer pathway. As the concentration of Eu3+ was increased, the emission color changed from blue to purple and finally to red. In addition, the thermal stability and potential applications of the phosphors were extensively investigated. Finally, two WLED devices were successfully fabricated with color rendering indices of 96.27 and 92.18, and correlated color temperatures of 5198 and 2475 K. This underscores the prospective application of these phosphors in the field of high-quality warm WLEDs.

20.
Molecules ; 28(18)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37764246

RESUMEN

The shift to an environmentally friendly material economy requires renewable resource exploration. This shift may depend on lignin valorization. Lignin is an aromatic polymer that makes up one-third of total lingo-cellulosic biomass and is separated into large amounts for biofuel and paper manufacture. This renewable polymer is readily available at a very low cost as nearly all the lignin that is produced each year (90-100 million tons) is simply burned as a low-value fuel. Lignin offers potential qualities for many applications, and yet it is underutilized. This Perspective highlights lignin-based material prospects and problems in food packaging, antimicrobial, and agricultural applications. The first half will discuss the present and future studies on exploiting lignin as an addition to improve food packaging's mechanical, gas, UV, bioactive molecules, polyphenols, and antioxidant qualities. Second, lignin's antibacterial activity against bacteria, fungi, and viruses will be discussed. In conclusion, lignin agriculture will be discussed in the food industries.


Asunto(s)
Lignina , Nanoestructuras , Agricultura , Antibacterianos/farmacología , Polímeros
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...